Tag Archives: light activation

Modulight Spotlights: LASER-SHARP RESEARCH – July 2024

 Modulight Spotlights: LASER-SHARP RESEARCH – July 2024 Exciting new findings in prostate cancer research were reported by Xinning Wang and team at Case Western University, Comprehensive Cancer Center. Prostate cancer is the most common cancer among men and despite typically good prognosis, is a leading cause of cancer-related death. In the new study, the team combined chemotherapy with a novel light-activated, theranostic agent to enable targeted imaging and treatment of prostate cancer. Using ML7710 laser at 672 nm for activation of the drug, they were Continue reading →

Development of thermosensitive liposomes with the help of ML8500

Background The proper delivery and release of therapeutic drugs to a specific site or cell type is one of the main challenges in the treatment of diseases. Liposomes, which are vesicles composed of lipids, serve as carriers for drug delivery thanks to their long circulation time. This results to reduced toxicity in healthy tissues and improved therapeutic efficacy of encapsulated drugs. However, conventional liposomes can often be even too stabile, leading to insufficient drug release at the target site. Light activation can offer a solution Continue reading →Customer case Pharmaceutical Nanotechnology Group at University of Helsinki is specialized in top-level pharmaceutical research. Led by Professor Timo Laaksonen, the group focuses on controlled drug release and delivery using modern methods and materials. Particular interest lies in using light to both monitor nanomaterial behavior and to trigger e.g. drug release processes. Modulight products: ML8500, ML6600, MLAKIT   Prof. Timo Laaksonen Dr. Tatu Lajunen Laser use: Light-triggered drug release studies from light-activated liposomes. ML8500 with 808 nm wavelength was used to induce the release of calcein from liposomes under Continue reading →

Development of Robust Cationic Light-Activated Thermosensitive Liposomes: Choosing the Right Lipids

Published in: Molecular Pharmaceutics Authors: Puja Gangurde, Mohammad Mahmoudzadeh, Zahra Gounani, Artturi Koivuniemi, Patrick Laurén, Tatu Lajunen, Timo Laaksonen  Published in: Molecular Pharmaceutics Authors: Puja Gangurde, Mohammad Mahmoudzadeh, Zahra Gounani, Artturi Koivuniemi, Patrick Laurén, Tatu Lajunen, Timo Laaksonen The study investigated the impact of different lipids on liposome stability. It was found that substituting unsaturated lipid with equal amount of saturated lipid, resulted in stable liposomes that were highly responsive to light triggered release. ML8500 was used for light-activated release of calcein from liposomes.   Read the article here

Modulight Spotlights: LASER-SHARP RESEARCH – February 2023

 Modulight Spotlights: LASER-SHARP RESEARCH – February 2023 The nomination for Laser-Sharp Research goes to Mäki-Mikola et al. at University of Helsinki for their development of a dynamic cell culturing platform for light-activation studies. The developed platform has a flow chamber connected to a peristaltic pump, which creates a flow that resembles the natural fluid flow at the cell surfaces. ML6500 laser was used to release calcein from liposomes to validate the suitability of the platform for light-triggered drug release. Compared to traditional static cell culture Continue reading →

Treg-Dominant Tumor Microenvironment Is Responsible for Hyperprogressive Disease after PD-1 Blockade Therapy

Published in: Cancer Immunology Research Authors: Hiroaki Wakiyama, Takuya Kato, Aki Furusawa, Ryuhei Okada, Fuyuki Inagaki, Hideyuki Furumoto, Hiroshi Fukushima, Shuhei Okuyama, Peter L. Choyke, Hisataka Kobayashi    Published in: Cancer Immunology Research Authors: Hiroaki Wakiyama, Takuya Kato, Aki Furusawa, Ryuhei Okada, Fuyuki Inagaki, Hideyuki Furumoto, Hiroshi Fukushima, Shuhei Okuyama, Peter L. Choyke, Hisataka Kobayashi   Cytotoxic T cells were partially depleted by NIR-PIT (using ML7710 for light activation) in mouse tumor models. PD-1 blockage led to rapid tumor progression compared with controls, indicating that rapid tumor progression, called hyperprogressive disease, after PD-1 blockage therapy can be attributed to imbalance between T cell populations.   Read the article here