Laser company for medical applications – Modulight

Laser company for medical applications - Modulight

Photodynamic therapy
We #KillCancer

Modulight participates in the fight against cancer by providing innovative clinical laser solutions for different laser-assisted therapies.

Ophthalmic lasers

Lasers are used in ophthalmology for many indications, such as treating ocular tumors, glaucoma, and intraretinal vascular abnormalities.

In vitro
Genetics, drug discovery, diagnostics

We support diagnostic applications ranging from endoscopic fluorescence imaging to next generation sequencing.

Semiconductor development
Original semiconductor laser design & manufacturing

We believe that the laser diodes should be optimized for your application - not vice versa!

previous arrow
next arrow

Personalized medicine and better life

We’re helping people with their novel ideas. We have experience in productization, manufacturing subassemblies in regular production, as well as working to support end-of-life as an equally important phase in the life cycle of a medical product.

Products in spotlight:


ML7710 is the most versatile multichannel & multi-indication laser in the world. The treatment flow has been optimized and it can be further customized to specific needs. ML7710 supports all known photosensitizers. As the only true medical laser platform, it also boasts unmatched security for the investment.


ML8500 is an automatic system for illuminating well plates. ML8500 has up to six built-in lasers. Cloud-based composition of illumination programs can be done remotely which enables effective research work. ML8500 keeps sample plates within a specified temperature and CO2 range.


ML6600 is a cloud-powered laser platform, which can host different laser technologies (diode, fiber, DPSS). Specifications will be tailored to the application. Wavelength in the range from UV to 2+ µm, power from mW up to 100 W, and linewidths down to kHz.

Search all Modulight products:

Browse all Modulight products here. The list can be filtered by wavelength, power, and other parameters.

Upcoming Events

Latest news and articles

Modulight Spotlights: LASER-SHARP RESEARCH – April 2024

Modulight Spotlights: LASER-SHARP RESEARCH – April 2024 First-in-human, phase 1 clinical trial results with ML7710 have been published in a renowned journal Radiology by Timothy Baran and team at University of Rochester Medical Center. The trial investigated treatment of deep tissue abscesses using photodynamic therapy with methylene blue and ML7710 laser. Abscesses are painful collection of pus, usually caused by a bacterial infection. Standard treatment is abscess drainage and antibiotics, however treatment responses vary widely and are linked to prolonged hospital stay, costs, and patient discomfort, as well as increasing concerns for antibiotic-resistance. The trial in 18 Continue reading →

AI-based laser alignment for Flow Cytometry

Next generation flow cytometry Lasers have been historically the key light sources utilized in flow cytometry due to their ability to deliver the precise amount of energy needed to trigger the Stokes shift, which is the key phenomena underlying flow cytometry operation. For the same reason lasers and optical system in general are referred to as the “heart of flow cytometer”, since they are the integral component initiating the instrument operation. To ensure smooth and repeatable flow cytometer performance laser source needs to exhibit excellent Continue reading →

Photobiomodulation for pain treatment using ML6600

Customer case University of Toyama is a Japanese national university located in Toyama City and Takaoka City and established in 1949. It is comprised of 3 former national universities Toyama University, Toyama Medical and Pharmaceutical University, and Takaoka National College. Naoya Ishibashi Daisuke Uta Modulight products: ML6600 Laser use: Studying pain treatment with photobiomodulation. Links to articles:     Background Photobiomodulation with low-level laser or light therapy is an effective treatment for pain. It has various effects, such as analgesic (pain-relieving) effects, anti-inflammatory effects, tissue regeneration Continue reading →

Phototruncation cell tracking with near-infrared photoimmunotherapy using heptamethine cyanine dye to visualise migratory dynamics of immune cells

Published in: eBioMedicine Authors: Hiroshi Fukushima, Aki Furusawa, Seiichiro Takao, Siddharth S. Matikonda, Makoto Kano, Shuhei Okuyama, Hiroshi Yamamoto, Peter L. Choyke, Martin J. Schnermann, Hisataka Kobayashi A new method called phototruncation-assisted cell tracking (PACT) can be used to noninvasively track migration of immune cells to understand anti-cancer immunity mechanisms. PACT is based on irreversible photo-induced truncation reaction, transforming Cy7 into Cy5 when exposed to NIR light (780 nm). PACT was used in this study to monitor spatiotemporal migration of immune cells between tumor and Continue reading →

Development of thermosensitive liposomes with the help of ML8500

Customer case Pharmaceutical Nanotechnology led by Professor Timo Laaksonen on controlled drug release and delivery using modern methods and materials. Particular interest lies in using light to both monitor nanomaterial behavior and to trigger e.g. drug release processes. Modulight products: ML8500, ML6600, MLAKIT Prof. Timo Laaksonen Dr. Tatu Lajunen Laser use: Light-triggered drug release studies from light-activated liposomes. ML8500 with 808 nm wavelength was used to induce the release of calcein from liposomes under different temperatures. The effect of different type of lipids on liposomal Continue reading →

Modulight Spotlights: LASER-SHARP RESEARCH – March 2024

Modulight Spotlights: LASER-SHARP RESEARCH – March 2024 Glioblastoma is the most aggressive type of brain tumor. It is hard to treat because of its invasion into functioning brain tissues, limited drug delivery due to blood-brain-barrier, and evolved treatment resistance. To address these challenges, a light-activated nanoformulation, called nanoVP, was developed for glioblastoma in a new study co-led by John Quinlan and Collin Inglut in Dr. Huang’s team at the University of Maryland. Published in a prestigious journal Advanced Science, this novel therapy resulted in an improved tumor control and survival Continue reading →

Carrier-Free, Amorphous Verteporfin Nanodrug for Enhanced Photodynamic Cancer Therapy and Brain Drug Delivery

Published in: Advanced Science Authors: John A. Quinlan, Collin T. Inglut, Payal Srivastava, Idrisa Rahman, Jillian Stabile, Brandon Gaitan, Carla Arnau Del Valle, Kaylin Baumiller, Anandita Gaur, Wen-An Chiou, Baktiar Karim, Nina Connolly, Robert W. Robey, Graeme F. Woodworth, Michael M. Gottesman, Huang-Chiao Huang University of Maryland Glioblastoma (GBM) is hard to treat due to cellular invasion into functioning brain tissues, limited drug delivery, and evolved treatment resistance. Recurrence is nearly universal even after surgery, chemotherapy, and radiation. Photodynamic therapy (PDT) involves photosensitizer administration followed by light activation to generate reactive oxygen species at tumor sites, thereby killing cells or Continue reading →

ML7710 for photoactivated treatment of lung cancer

Deadliest cancer Lung cancer is the leading cause of cancer deaths worldwide, with more than 2.2 million cases and 1.8 million deaths each year [1]. Lung cancer can be divided into two types, small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), with the latter accounting for about 85% of all lung cancer cases. NSCL is usually less sensitive to chemo- and radiotherapy and in many cases tumor cannot be removed surgically or has spread from lungs to distant sites at the time Continue reading →

Modulight in social media