Tag Archives: University of Helsinki

Modulight Spotlights: LASER-SHARP RESEARCH – October 2024

Modulight Spotlights: LASER-SHARP RESEARCH – October 2024 This month, we are highlighting new findings published in RSC Materials Advances by Olga Lem, Roosa Kekki and researchers at Pharmaceutical Nanotechnology research group and Tampere University. The study provides key insights into the role of lipid oxidation in cargo release from light-activated liposomes. These spherical lipid vesicles can be controlled by light to provide time- and site-specific drug delivery, for example for cancer treatment. Red light provides a non-invasive, selective, and safe trigger for releasing liposomal cargo. Modulight’s Continue reading →

Development of thermosensitive liposomes with the help of ML8500

Background The proper delivery and release of therapeutic drugs to a specific site or cell type is one of the main challenges in the treatment of diseases. Liposomes, which are vesicles composed of lipids, serve as carriers for drug delivery thanks to their long circulation time. This results to reduced toxicity in healthy tissues and improved therapeutic efficacy of encapsulated drugs. However, conventional liposomes can often be even too stabile, leading to insufficient drug release at the target site. Light activation can offer a solution Continue reading →Customer case Pharmaceutical Nanotechnology Group at University of Helsinki is specialized in top-level pharmaceutical research. Led by Professor Timo Laaksonen, the group focuses on controlled drug release and delivery using modern methods and materials. Particular interest lies in using light to both monitor nanomaterial behavior and to trigger e.g. drug release processes. Modulight products: ML8500, ML6600, MLAKIT   Prof. Timo Laaksonen Dr. Tatu Lajunen Laser use: Light-triggered drug release studies from light-activated liposomes. ML8500 with 808 nm wavelength was used to induce the release of calcein from liposomes under Continue reading →

Development of Robust Cationic Light-Activated Thermosensitive Liposomes: Choosing the Right Lipids

Published in: Molecular Pharmaceutics Authors: Puja Gangurde, Mohammad Mahmoudzadeh, Zahra Gounani, Artturi Koivuniemi, Patrick Laurén, Tatu Lajunen, Timo Laaksonen  Published in: Molecular Pharmaceutics Authors: Puja Gangurde, Mohammad Mahmoudzadeh, Zahra Gounani, Artturi Koivuniemi, Patrick Laurén, Tatu Lajunen, Timo Laaksonen The study investigated the impact of different lipids on liposome stability. It was found that substituting unsaturated lipid with equal amount of saturated lipid, resulted in stable liposomes that were highly responsive to light triggered release. ML8500 was used for light-activated release of calcein from liposomes.   Read the article here

Light-induced drug delivery with indocyanine green liposomes

Introduction to light-controlled drug delivery systems Study description It is important that light-triggered liposomes efficiently release their contents, while the liposome stability should be maintained in the absence of laser light. The aim of this study is to determine how liposomal stability and drug release are affected by liposomal formulation. Indocyanine green was used as the light-sensitizing compound in the liposomes since it is clinically approved light-sensitive agent. Three different liposomal formulations were prepared: Formulation A: ICG in the aqueous core, liposomes coated Formulation B: ICG in the liposomal Continue reading →Customer case Faculty of Pharmacy at University of Helsinki is specialized in top-level pharmaceutical research. Multidisciplinary research fields include clinical pharmacy, experimental drugs, nanomedicines, and pharmaceutical drug design. Drug delivery unit led by Professor Arto Urtti focuses on design and testing of advanced drug delivery systems especially for ocular indications. Light is studied as an important tool to control the drug delivery to the target tissues. Modulight products: ML6600 (810 nm) + Modulight in vitro illumination kit (MLAKIT) Professor Arto Urtti   Senior Pharmaceutical Researcher Tatu Continue reading →