Tag Archives: quantum computing

ML6600 Multiwavelength Distributed Bragg Reflector Laser Platform for Quantum Applications

Modulight ML6600 Distributed Bragg Reflector laser cores are available at various wavelengths – 650 nm, 760 nm, 780 nm, 785 nm, 795 nm, and 935 nm – relevant to quantum and spectroscopy applications. The fully in-house manufactured laser diodes exhibit reliable high-power operation with down to below 500 kHz linewidth. Designed for highest-quality mechanical, optical and acoustical isolation, and integrated with ML6600 platform’s ultra-low-noise current drivers and accurate temperature controllers, these laser cores show top-notch performance. Both free-space output and single-mode polarization maintaining fiber are Continue reading →Modulight ML6600 Distributed Bragg Reflector laser cores are available at various wavelengths - 650 nm, 760 nm, 780 nm, 785 nm, 795 nm, and 935 nm - relevant to quantum and spectroscopy applications. The fully in-house manufactured laser diodes exhibit reliable high-power operation with down to below 500 kHz linewidth. Designed for highest-quality mechanical, optical and acoustical isolation, and integrated with ML6600 platform’s ultra-low-noise current drivers and accurate temperature controllers, these laser cores show top-notch performance. Both free-space output and single-mode polarization maintaining fiber are Continue reading →

Multiwavelength narrow linewidth laser system for Ba+ quantum computing applications

Published in: QUANTUM WEST SPIE 2024 Authors: Kostiantyn Nechay, Luukas Kuusela, Pekko Sipilä, Kalle Palomäki, Petteri Uusimaa  Published in: QUANTUM WEST SPIE 2024 Authors: Kostiantyn Nechay, Luukas Kuusela, Pekko Sipilä, Kalle Palomäki, Petteri Uusimaa Quantum information processing (QIP) approach based on trapped ions is a promising technology that exploits different ion species as individual qubits and qubit gates, while featuring long coherence times, high fidelity of operations, fast readout, and ion-ion gate entanglement. The practical usefulness of trapped-ion quantum computer depends on its further scaling to a large number of qubits. Meanwhile, trapped-ion quantum computer relies on a set of single-frequency lasers, utilizing Continue reading →

Narrow linewidth 650 nm DBR laser diode for quantum applications

Published in: QUANTUM WEST SPIE 2024 Authors: Riina Ulkuniemi, Luukas Kuusela, Mika Mähönen, Timo Aho, Jussi Hämelahti, Andreas Schramm, Soile Talmila, Pekko Sipilä, Petteri Uusimaa  Published in: QUANTUM WEST SPIE 2024 Authors: Riina Ulkuniemi, Luukas Kuusela, Mika Mähönen, Timo Aho, Jussi Hämelahti, Andreas Schramm, Soile Talmila, Pekko Sipilä, Petteri Uusimaa Laser systems are utilized in quantum for various applications. Multiple wavelengths and tailored solutions are required depending on the technology that the laser will be applied to. For instance, lasers can be used for controlling particles and molecules, including excitations of the quantum systems. Key performance requirements for lasers used in these applications include narrow linewidth, frequency stability, and single-frequency Continue reading →

Narrow linewidth VECSELs for Ba+ cooling at 493 nm

Published in: LASE SPIE 2024 Authors: Kostiantyn Nechay, Andreas Schramm, Mika Mähönen, Soile Talmila, Jussi Hämelahti, Pekko Sipilä, Kalle Palomäki, Petteri Uusimaa  Published in: LASE SPIE 2024 Authors: Kostiantyn Nechay, Andreas Schramm, Mika Mähönen, Soile Talmila, Jussi Hämelahti, Pekko Sipilä, Kalle Palomäki, Petteri Uusimaa Quantum information processing based on trapped ion technology is one of the leading platforms, heavily relying on a set of single-frequency lasers in its core operations. Narrow linewidth lasers perform atom photoionization, cooling, state-preparation and read-out. In this work we demonstrate in-house designed and fabricated optically pumped semiconductor laser gain mirror comprised of InGaAs quantum wells and GaAs/AlAs distributed Bragg reflector. We demonstrate Continue reading →

Narrow linewidth 935 nm DBR laser diode for quantum applications

Published in: OPTO SPIE 2024 Authors: Mika Mähönen, Riina Ulkuniemi, Luukas Kuusela, Timo Aho, Andreas Schramm, Soile Talmila, Pekko Sipilä, Petteri Uusimaa  Published in: OPTO SPIE 2024 Authors: Mika Mähönen, Riina Ulkuniemi, Luukas Kuusela, Timo Aho, Andreas Schramm, Soile Talmila, Pekko Sipilä, Petteri Uusimaa Laser systems with ultra-stable and narrow linewidth operation are a crucial part for many quantum computing and quantum sensing technologies, such as trapped ion and neutral ion approaches. The particular interest in this work is the fabrication of a 935 nm Distributed Bragg reflector (DBR) laser which can be used to repump Yb ions permitting Doppler cooling. DBR’s can provide output powers in Continue reading →

Narrow linewidth DBR and MOPA laser systems for quantum applications in the 7xx nm regime

Published in: OPTO SPIE 2024 Authors: Luukas Kuusela, Timo Aho, Riina Ulkuniemi, Mika Mähönen, Jussi Hämelahti, Andreas Schramm, Soile Talmila, Pekko Sipilä, Petteri Uusimaa  Published in: OPTO SPIE 2024 Authors: Luukas Kuusela, Timo Aho, Riina Ulkuniemi, Mika Mähönen, Jussi Hämelahti, Andreas Schramm, Soile Talmila, Pekko Sipilä, Petteri Uusimaa Lasers are a key enabling technology in the field of quantum computing, quantum sensing and quantum metrology. These applications require technically challenging properties from the lasers in use, such as stable and precisely controlled wavelength, up to watt level output power, and a narrow linewidth. Semiconductor diode lasers offer a very compact size, low power consumption, as well as scalability of Continue reading →

High brightness long lifetime 650nm single-mode laser diodes and arrays for display, printing, and quantum applications

Published in: LASE SPIE 2024 Authors: Riina Ulkuniemi, Andreas Schramm, Ville Vilokkinen, Jari Nikkinen, Petteri Uusimaa  Published in: LASE SPIE 2024 Authors: Riina Ulkuniemi, Andreas Schramm, Ville Vilokkinen, Jari Nikkinen, Petteri Uusimaa Individually addressable laser diode arrays (IAB) have been first demonstrated in near-infrared wavelengths, 8xx nm and 9xx nm, being mostly utilized in the digital printing industry. When moving towards visible wavelengths, other applications emerge. Examples of these are various display applications, including AR/VR products and head-up-displays. In addition, novel applications for narrow linewidth lasers have emerged in the field of quantum computing. In this paper, we present our latest Continue reading →

Tailorable semiconductor laser platform in the 7xx nm regime

Published in: OPTO SPIE 2024 Authors: Andreas Schramm, Luukas Kuusela, Mika Mähönen, Soile Talmila, Ville Vilokkinen, Petteri Uusimaa  Published in: OPTO SPIE 2024 Authors: Andreas Schramm, Luukas Kuusela, Mika Mähönen, Soile Talmila, Ville Vilokkinen, Petteri Uusimaa We report on tailoring capabilities in the 7xx nm wavelength range utilizing GaAsP or InGaAsP quantum wells (QW) embedded in AlGaAs. Laser structures are grown using metal-organic chemical vapor deposition. Wafers and manufactured lasers are thoroughly characterized, and lifetime tests are performed to validate laser reliabilities. Changing QW parameters enables us to tune the wavelength or polarization of the laser emission.   Read the article here

Distributed Bragg Reflector (DBR) Laser Diodes

Introduction to DRB lasers Distributed Bragg Reflector (DBR) laser diodes are a class of single-frequency monolithic semiconductor lasers. Monolithic semiconductor lasers in general are small in size, mechanically robust, and have good power conversion efficiency. They also provide opportunities for hybrid integration with photonic integrated circuits (PICs). This application note provides an overview of DBR lasers, their principles of operation, their modal behavior, and their diverse applications. Principles of DBR Laser Operation A DBR laser is a semiconductor laser with one or several quantum wells Continue reading →

Modulight launches ML6600 for Flow Cytometry and Quantum Computing

Next week at Photonics West 2024, Modulight will unveil significant new additions to the ML6600 laser solution platform. These new innovations include a specialized laser engine tailored for Flow Cytometry applications, and advanced DBR laser cores designed specifically for the Quantum Computing market. Our #LaserFamily are presenting 11 conference papers plus participating in a technical panel, across the Photonics West conferences BIOS, OPTO, LASE and QUANTUM WEST. You can see the list here. ML6600 for Flow Cytometry – Laser engine with active beam steering The newest product utilizing the ML6600 platform is a specialized laser engine for the Continue reading →Next week at Photonics West 2024, Modulight will unveil significant new additions to the ML6600 laser solution platform. These new innovations include a specialized laser engine tailored for Flow Cytometry applications, and advanced DBR laser cores designed specifically for the Quantum Computing market. Our #LaserFamily are presenting 11 conference papers plus participating in a technical panel, across the Photonics West conferences BIOS, OPTO, LASE and QUANTUM WEST. You can see the list here. ML6600 for Flow Cytometry – Laser engine with active beam steering The newest product utilizing the ML6600 platform is a specialized laser engine for the Continue reading →