Tag Archives: Photoimmunotherapy

Modulight Spotlights: LASER-SHARP RESEARCH – November 2022

   Modulight Spotlights: LASER-SHARP RESEARCH – November 2022 This month’s Spotlight goes to Susumu Yamashita et al. for promising findings on novel light-based therapy for breast cancer treatment, published in a journal Cancer Medicine. Their teams at Olympus and Tokyo University of Agriculture and Technology developed trastuzumab-conjugated photo-absorber (Tra-IR700) which targets HER2-positive breast cancer cells. This treatment strategy is particularly relevant, since HER2 biomarker is associated with poor survival of breast cancer patients and often has intrinsic or acquired resistance to standard trastuzumab therapy. Especially for these patients, Tra-IR700 activated with Continue reading →

Light penetration depth in brain with different photosensitizers

  Motivation for the study Glioblastoma is the most aggressive and lethal brain cancer with an average prognosis of 15 months. Fluorescence-guided surgery (FGS) for glioblastoma was FDA-approved in 2017, while photodynamic therapy (PDT) remains an active area of clinical investigation with very promising results so far. The aim of PDT is to eradicate the invasive cancer cells within 2 cm of the resected area where the glioblastoma most often recurs. However, a significant hurdle of this therapy modality is the limited light penetration depth Continue reading →Customer case Research by: University of Maryland, Optical Therapeutics & Nanotechnology Laboratory led by Prof. Huang. Research focuses on precision cancer nanomedicine, drug delivery strategies, overcoming cancer resistance, mechanism-based combination therapies, site-directed photochemistry and fluorescence diagnostics. Modulight has started a joint R&D program with Dr. Huang lab to study novel EGFR-targeted combination therapy/diagnostic agent PIC-Nal-IRI developed by Huang lab. Modulight products: ML6600 laser system (635 nm and 689 nm). Professor Huang-Chiao Huang Laser use: Targeted photodynamic therapy/photoimmunotherapy with benzoporphyrin derivative (BPD) & 5-aminolevulinic acid (5-ALA) photosensitizers. Continue reading →

Modulight Spotlights: LASER-SHARP RESEARCH – September 2021

 Modulight Spotlights: LASER-SHARP RESEARCH – September 2021 Laser-Sharp Research nomination goes to this month for Professor Kobayashi’s team and Dr. Noriko Sato’s team at National Cancer Institute, National Institute of Health, USA. Their research published in a prestigious Cancer Research journal showed that photoimmunotherapy can not only target tumor cells, but can also be harnessed to target body’s own tumor-promoting immune cells within the tumor. These special cells called intratumoral Tregs were selectively killed by photoimmunotherapy upon illumination with ML7710 laser, which led to activation Continue reading →

Combining photoimmunotherapy with immune checkpoint inhibition

Motivation for the study The motivation was to study if photoimmunotherapy could enhance anti-tumor immunity when combined with immune checkpoint inhibition. CD44-targeted photoimmunotherapy was applied against poorly immunogenic, “cold” tumor and antitumor effect was studied alone and in combination with anti-PD-1 immune checkpoint inhibition. Sensitization of this “cold” tumor to immune checkpoint inhibition after photoimmunotherapy would mean that the tumor has been converted into highly immunogenic, “hot” tumor infiltrated with killer T cells mainly responsible for eradicating the tumor. The formation of immunological antitumor memory Continue reading →Customer case The Laboratory of Molecular Theranostics at National Cancer Institute (NCI) is a major research section of the Molecular Imaging Program at National Cancer Institute (NCI) and is led by Dr. Hisataka Kobayashi who is the father of photoimmunotherapy. The ground-breaking research includes the development of imaging and theranostic probes with a particular emphasis on optical probes, which can aid in cancer detection during cancer resection or endoscopy. Dr. Hisataka Kobayashi M.D., PhD Dr. Peter L. Choyke M.D., PhD   Modulight products: ML7710 (multiple channels Continue reading →

ML7710 for photoimmunotherapy against regulatory T cells in tumors

    Results Tumor growth was significantly suppressed by photoimmunotherapy, compared to control or IgG without light activation. Tumor growth suppression, as well as overall survival after photoimmunotherapy, were significantly better with F(ab´)2 fragments than with full IgG. This efficacy improvement might be related to killer T cells, which were detected in much higher numbers after photoimmunotherapy with F(ab´)2 fragments and are key cells for the generation of efficient systemic antitumor immunity.       Related Modulight products and Services   Related Publications The Effect Continue reading →Customer case The Laboratory of Molecular Theranostics is a major research section of the Molecular Imaging Program at National Cancer Institute (NCI) and is led by Dr. Hisataka Kobayashi. The groundbreaking research includes the development of imaging and theranostic probes, which can aid in cancer detection and treatment. Dr. Kobayashi has invented near-infrared photoimmunotherapy (NIR-PIT) with IRDye700DX, which is currently in FDA-designated fast-track Phase 3 trials for inoperable Head & Neck cancer. Dr. Hisataka Kobayashi M.D., PhD   Dr. Peter L. Choyke M.D., PhD   Continue reading →

Modulight Spotlights: LASER-SHARP RESEARCH – May 2021

Modulight Spotlights: LASER-SHARP RESEARCH – May 2021 The renowned pioneer in photoimmunotherapy (PIT), Professor Hisataka Kobayashi, has published an outstanding article with his team at National Cancer Institute / NIH. The article is about improving the antitumor efficacy of near-infrared photoimmunotherapy (NIR-PIT) by simultaneous targeting of cancer cells and regulatory T cells in the tumor microenvironment. Read original publication   Modulight is very happy to be supporting this research. We would like to deliver our warmest congratulations to the research team!   #LaserSharpResearch  #ModulightInScience   Continue reading →