brain cancer

Carrier-Free, Amorphous Verteporfin Nanodrug for Enhanced Photodynamic Cancer Therapy and Brain Drug Delivery

Published in: Advanced Science Authors: John A. Quinlan, Collin T. Inglut, Payal Srivastava, Idrisa Rahman, Jillian Stabile, Brandon Gaitan, Carla Arnau Del Valle, Kaylin Baumiller, Anandita Gaur, Wen-An Chiou, Baktiar Karim, Nina Connolly, Robert W. Robey, Graeme F. Woodworth, Michael M. Gottesman, Huang-Chiao Huang University of Maryland  

Carrier-Free, Amorphous Verteporfin Nanodrug for Enhanced Photodynamic Cancer Therapy and Brain Drug Delivery Read More »

Light penetration depth in brain with different photosensitizers

  Motivation for the study Glioblastoma is the most aggressive and lethal brain cancer with an average prognosis of 15 months. Fluorescence-guided surgery (FGS) for glioblastoma was FDA-approved in 2017, while photodynamic therapy (PDT) remains an active area of clinical investigation with very promising results so far. The aim of PDT is to eradicate the

Light penetration depth in brain with different photosensitizers Read More »

Photothermal therapy with platinum nanoparticles

Photothermal therapy efficiency Human ovarian cancer cells were plated on Petri dishes and incubated with platinum nanoparticles of varying sizes between 30 and 70 nm. After 24-hour incubation, irradiation was performed using a Modulight ML6600 laser at 808 nm together with an illumination kit (MLAKIT) tailored for Petri dish illumination. A small area of the dish

Photothermal therapy with platinum nanoparticles Read More »

ML7710 for glioblastoma treatment

Background   Professor Stummer on glioblastoma surgeries and iPDT:   Treatment protocol 20 patients were treated. 5-ALA (Gliolan) was administered at a dosage of 20 mg/kg body weight 4 hours before anesthesia. Craniotomy was performed using FGR, with aim of maximal safe resection of the fluorescent tumor. Once there was no visible fluorescence or only

ML7710 for glioblastoma treatment Read More »

Platinum nanoparticles: a non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering

Published in: Nanoscale Authors: Akbar Samadi, Henrik Klingberg, Liselotte Jauffred, Andreas Kjær, Poul Martin Bendix, Lene B. Oddershede    

Platinum nanoparticles: a non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering Read More »

Scroll to Top