Tag Archives: 689 nm

Optimized light delivery in pancreatic cancer

Motivation for the study Efficient light delivery to the whole tumor is one of the main aspects of phototherapy. The efficacy of phototherapy has been demonstrated for several cancers via superficial illumination. Interstitial illumination could enhance light delivery deeper inside the tumor and potentially result in more effective tumor eradication. Hence, the aim of this study is to compare if the therapeutic efficacy of phototherapy is dependent on the light delivery strategies.   Results Phototherapy (PT) with both superficial and interstitial illumination methods efficiently eradicated Continue reading →Customer case University of California at Irvine (UCI), founded in 1965, is a Top 10 public university in USA. It is recognized for cutting-edge and innovative scientific research. Modulight products: ML7710 (689 nm) Laser use: Targeted phototherapy studies with photo-immunoconjugates Link to the study: Nzola De Magalhães, Adjunct Assistant Professor   Motivation for the study Efficient light delivery to the whole tumor is one of the main aspects of phototherapy. The efficacy of phototherapy has been demonstrated for several cancers via superficial illumination. Interstitial illumination could Continue reading →

Light penetration depth in brain with different photosensitizers

  Motivation for the study Glioblastoma is the most aggressive and lethal brain cancer with an average prognosis of 15 months. Fluorescence-guided surgery (FGS) for glioblastoma was FDA-approved in 2017, while photodynamic therapy (PDT) remains an active area of clinical investigation with very promising results so far. The aim of PDT is to eradicate the invasive cancer cells within 2 cm of the resected area where the glioblastoma most often recurs. However, a significant hurdle of this therapy modality is the limited light penetration depth Continue reading →Customer case Research by: University of Maryland, Optical Therapeutics & Nanotechnology Laboratory led by Prof. Huang. Research focuses on precision cancer nanomedicine, drug delivery strategies, overcoming cancer resistance, mechanism-based combination therapies, site-directed photochemistry and fluorescence diagnostics. Modulight has started a joint R&D program with Dr. Huang lab to study novel EGFR-targeted combination therapy/diagnostic agent PIC-Nal-IRI developed by Huang lab. Modulight products: ML6600 laser system (635 nm and 689 nm). Professor Huang-Chiao Huang Laser use: Targeted photodynamic therapy/photoimmunotherapy with benzoporphyrin derivative (BPD) & 5-aminolevulinic acid (5-ALA) photosensitizers. Continue reading →

Protected: In-vivo distribution and vascular & tumor responses

There is no excerpt because this is a protected post.Customer case Erasmus MC is the largest and one of the best University Medical Centers in Europe. Modulight products: ML7710 (689 nm) Laser use: Activation of antibody-IRDye700DX conjugates for photoimmunotherapy of cancer. Link to the study:   Dominic Robinson (PI)   Research Research centered on PDT encompasses 3 main themes: Understanding the mechanism of action/theoretical bases of PDT Developing technology for PDT dosimetry/treatment monitoring Receptor targeted PDT/PIT. Main indications of interest are dermatology, gastroenterology and H&N cancer. Most recently the group has investigated mechanisms & effectiveness Continue reading →

Protected: New approach for targeted PDT of glioblastoma

There is no excerpt because this is a protected post.Customer case Research in close collaboration with University Medical Center Utrecht, Erasmus Medical Center and Leiden University Medical Center. Research focused on the efficacy and mechanisms of targeted cancer photoimmunotherapy using nanobodies (antibody fragments). The advantage of nanobodies lies in the combination of their small molecular size, with high binding affinity for their targets, resulting to high accumulation at the tumor site, better tumor penetration and faster clearance from blood circulation. The aim is to target therapy to cancer cell-expressing antigens like EGFR (H&N cancer) Continue reading →

Development of heat shock protein 90-targeted PDT for inflammatory breast cancer

Motivation of the study In photodynamic therapy (PDT), systemically administered photosensitizer is activated within the tumor using focused near-infrared light, typically a laser with a wavelength matching the absorption peak of the photosensitizer. Several photosensitizers have been clinically approved for the treatment of different cancers; however, their accumulation is non-tumor exclusive which exposes healthy tissues to side effects like daylight-induced phototoxicity. A promising strategy to improve tumor selectivity is to couple photosensitizer to a tumor-targeting agent that binds to a specific antigen expressed on the Continue reading →Customer case Research by: Duke University, founded in 1924, is one of the leading and wealthiest private research universities in the USA. The most notable Duke alumni is President Richard Nixon. Research at Duke University has been awarded with several Nobel prizes in recent years for groundbreaking discoveries in biochemistry and medicine, such as G-protein coupled receptors, DNA mismatch repair, and cellular regulation of hypoxia. Modulight products: ML8500, ML7710 (665 nm, 689 nm, 750 nm) Laser use: Heat shock protein 90-targeted PDT for breast cancer Continue reading →