Targeting Borrelia burgdorferi HtpG with a berserker molecule, a strategy for anti-microbial development
Published in: Cell Chemical Biology Authors: Dave L. Carlson, Mark Kowalewski, Khaldon Bodoor, Matthew R. Redinbo, Neil Spector, Timothy A.J. Haystead Duke UniversityPublished in: Cell Chemical Biology Authors: Dave L. Carlson, Mark Kowalewski, Khaldon Bodoor, Matthew R. Redinbo, Neil Spector, Timothy A.J. Haystead Duke University Conventional antimicrobial discovery relies on targeting essential enzymes in pathogenic organisms, contributing to a paucity of new antibiotics to address resistant strains. Here, by targeting a non-essential enzyme, Borrelia burgdorferi HtpG, to deliver lethal payloads, we expand what can be considered druggable within any pathogen. We synthesized HS-291, an HtpG inhibitor tethered to the photoactive toxin verteporfin. Reactive oxygen species, generated by light, enables Continue reading →