ML7710 for fluorescence imaging: Detection of colorectal polyps in humans using c-Met targeted fluorescent peptide

Motivation for the study Polyps are small growths on the inner lining of the colon or rectum, affecting around 1 in 4 people over the age of 50. Certain types of polyps may eventually become cancerous, and colon cancer prevention relies on colonoscopy using white light to detect and remove the polyps. However, small and flat polyps are difficult to detect and frequently missed with this technique. More precise methods to detect polyps before they progress to colorectal cancer are urgently needed. GE Healthcare’s patented EMI-137 Continue reading →Customer Case Research by: GE Healthcare is a manufacturer and distributor of diagnostic imaging agents and radiopharmaceuticals, R&D collaborations with Leiden University MC for early detection of colorectal tumors. Modulight products: ML7710 series clinical laser system (635 nm, 3 W) Laser use: Clinical single-wavelength laser device used for exciting novel fluorescence probe used to detect colorectal polyps. Link to the study: Dr. James Hardwick, Professor of gastroenterology & hepatology Research topics: Professor Hardwick’s research has contributed to many key improvements in the detection and treatment of colorectal Continue reading →

Vascular-targeted phototherapy study for prostate cancer

  Study protocol         Related Modulight products and Services ML7710 – Laser device suited for pre-clinical and clinical applications »      Related Publications WST11 Vascular Targeted Photodynamic Therapy Effect Monitoring by Multispectral Optoacoustic Tomography (MSOT) in Mice Volker Neuschmelting, Kwanghee Kim, Jaber Malekzadeh-Najafabadi, Sylvia Jebiwott, Jaya Prakash, Avigdor Scherz, Jonathan A Coleman, Moritz F Kircher, Vasilis Ntziachristos Theranostics, 2018, 8 (3)   High-resolution optoacoustic imaging of tissue responses to vascular-targeted therapies Katja Haedicke, Lilach Agemy, Murad Omar, Andrei Berezhnoi, Sheryl Roberts, Camila Longo-Machado, Magdalena Skubal, Karan Nagar, Hsiao-Ting Hsu, Kwanghee Kim, Thomas Reiner, Jonathan Coleman, Vasilis Ntziachristos, Avigdor Scherz, Jan Grimm Nat Biomed Continue reading →Basic Info of the Study Research by: Memorial Sloan Kettering Cancer Center is one of the world’s premier cancer centers, collaborating with Weizmann Institute of Science research group. Modulight products: ML7710 (753 nm) Laser use: Study effects of vascular-targeted phototherapy in xenograft models Link to the study: Dr. Kwanghee Kim Dr. Avigdor Scherz   Vascular-targeted phototherapy Vascular-targeted phototherapy (VTP) was developed by Avigdor Scherz (Weizmann Institute of Science), and it is now owned by Steba Biotech. VTP agent Tookad was clinically approved for low-risk prostate cancer Continue reading →

In vitro illumination using ML8500: osmium-based anticancer photosensitizer with highest hypoxic activity reported to date

  Study protocol to determine wavelength, fluence, and irradiance activities of Os-4T:   Key observations Illumination parameters significantly affected the phototoxicity of Os-4T. The green light (525 nm) was more effective than the red light (630 nm) at lower fluences, while the maximal potency was achieved at both wavelengths when using fluences higher than 100 J/cm2. Irradiance affected the potency with both the red and the green light that were more effective when lower irradiances were used.   Graphs from the original publication. Open-access content Continue reading →Basic Info of the Study Research by: University of Texas at Arlington, US. One of the leading groups in photoactive drug discovery. Developed first clinical-level rubidium-based PS (TLD-1433), now in Theralase-sponsored Phase 2 trials for bladder cancer. Modulight products: ML8500 (445 nm, 525 nm, 630 nm, 753 nm, 810 nm) Laser use: Photoactive drug discovery Link to the study: Dr. Sherri McFarland (see her referral of Modulight) Research topics: Medicinal inorganic chemistry and drug discovery. Special interest in the synthesis of novel transition metal complexes and Continue reading →

Fully automated illumination study series for modern cancer drug development

Fully automated illumination study series for modern cancer drug development In vitro cell viability and dose escalation study for developing photosensitive or photoactivated drugs using Modulight ML7710 medical laser and ML8500 automated illumination system.     Experimental set up        Fully automated illumination study series for modern cancer drug development In vitro cell viability and dose escalation study for developing photosensitive or photoactivated drugs using Modulight ML7710 medical laser and ML8500 automated illumination system.   STUDY PLAN The goal was to investigate the effect of irradiance and light dose on a cancer cell line while keeping the photosensitive drug dosing constant. The well-by-well dose escalation plan was done in tabular format. TARGET Cancer cell line incubated at 37°C in acidic culture DRUG TYPE Photosensitive or Continue reading →

Range Finding

    Laser range finding applications set several requirements for the laser device. High output power is required at the same time in very short pulses of even picosecond range. However, the required power is defined by the distance and reflectivity of the target. High power can be achieved by constructing several emitter stacks or by increasing a single emitter dimensions. Light pulses up to 120-150 Watts can be generated using Modulight’s laser diodes at 905 nm wavelength range. Though comparably lower output power with Continue reading →Laser range finding: How it works? Pulsed laser range finder is based on measuring the difference in properties of the transmitted and back-reflected light from the target. The target changes the properties of the incident light and the back-reflected light is analyzed in the receiving equipment. Modulight manu­factures range-finding lasers for various market segments. The distance measurement techniques are required in determining the height, width, distance, volume or movement of the target.  Applications for the technique are laser radar speed measurements, traffic safety, laser profiling Continue reading →